December 4, 2024

Boody Boosters

Smart Exploration, Maximum Results

Trends and environmental impacts of virtual water trade

Trends and environmental impacts of virtual water trade
  • Postel, S. L. Entering an era of water scarcity: the challenges ahead. Ecol. Appl. 10, 941–948 (2000).

    Article 

    Google Scholar 

  • Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

    Article 

    Google Scholar 

  • van Vliet, M. T. H. et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 16, 024020 (2021).

    Article 

    Google Scholar 

  • Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    Article 

    Google Scholar 

  • Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res. 48, 2055 (2012).

    Article 

    Google Scholar 

  • Scanlon, B. R. et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 4, 87–101 (2023).

    Article 

    Google Scholar 

  • van Vliet, M. T. H., Flörke, M. & Wada, Y. Quality matters for water scarcity. Nat. Geosci. 10, 800–802 (2017).

    Article 

    Google Scholar 

  • Wang, M. et al. A triple increase in global river basins with water scarcity due to future pollution. Nat. Commun. 15, 880 (2024).

    Article 

    Google Scholar 

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    Article 

    Google Scholar 

  • Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Biodiversity Synthesis (World Resources Institute, 2005).

  • Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article 

    Google Scholar 

  • Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    Article 

    Google Scholar 

  • Beltran-Peña, A., Rosa, L. & D’Odorico, P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ. Res. Lett. 15, 095004 (2020).

    Article 

    Google Scholar 

  • United Nations World Water Assessment Programme. The United Nations World Water Development Report 2015: Water for a Sustainable World (UNESCO, 2015).

  • Vörösmarty, C. J., Hoekstra, A. Y., Bunn, S. E., Conway, D. & Gupta, J. Fresh water goes global. Science 349, 478–479 (2015).

    Article 

    Google Scholar 

  • Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Article 

    Google Scholar 

  • Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article 

    Google Scholar 

  • Searchinger, T., Edwards, R., Mulligan, D., Heimlich, R. & Plevin, R. Do biofuel policies seek to cut emissions by cutting food? Science 347, 1420–1422 (2015).

    Article 

    Google Scholar 

  • Searchinger, T. et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    Article 

    Google Scholar 

  • Welch, H., Green, C. T., Rebich, R. A., Barlow, J. R. B. & Hicks, M. Unintended Consequences of Biofuels Production: The Effects of Large-Scale Crop Conversion on Water Quality and Quantity (US Geological Survey, 2010); https://pubs.usgs.gov/of/2010/1229/.

  • Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    Article 

    Google Scholar 

  • Haqiqi, I. et al. Global drivers of local water stresses and global responses to local water policies in the United States. Environ. Res. Lett. 18, 065007 (2023).

    Article 

    Google Scholar 

  • Allan, J. A. Virtual Water: Tackling the Threat to Our Planet’s Most Precious Resource (Tauris, 2011).

  • Chapagain, A. K. & Hoekstra, A. Y. The global component of freshwater demand and supply: an assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water Int. 33, 19–32 (2008).

    Article 

    Google Scholar 

  • Oki, T. & Kanae, S. Virtual water trade and world water resources. Water Sci. Technol. 49, 203–209 (2004).

    Article 

    Google Scholar 

  • Liu, J. et al. Spillover systems in a telecoupled Anthropocene: typology, methods, and governance for global sustainability. Curr. Opin. Env. Sust. 33, 58–69 (2018).

    Article 

    Google Scholar 

  • Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. (2013).

  • Allan, J. A. Virtual water: a strategic resource: global solutions to regional deficits. Groundwater 36, 545 (1998).

    Article 

    Google Scholar 

  • Allan, J. A. Virtual water — the water, food, and trade nexus: useful concept or misleading metaphor? Water Int. 28, 106–113 (2003).

    Article 

    Google Scholar 

  • Hoekstra, A. Y. Virtual water trade. Proceedings of the International Expert Meeting on Virtual Water Trade Report No. 12 (UNESCO-IHE, 2003).

  • Hoekstra, A. Y. The Water Footprint of Modern Consumer Society 2nd edn (Routledge, 2019).

  • Hoekstra, A. Y. & Chapagain, A. K. Globalization of Water: Sharing the Planet’s Freshwater Resources (Blackwell, 2008).

  • Hanasaki, N., Inuzuka, T., Kanae, S. & Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384, 232–244 (2010).

    Article 

    Google Scholar 

  • Hou, S., Xu, M. & Qu, S. The ‘Gravity’ for global virtual water flows: from quantity and quality perspectives. J. Environ. Manag. 329, 116984 (2023).

    Article 

    Google Scholar 

  • Cazcarro, I., Schyns, J. F., Arto, I. & Sanz, M. J. Nations’ water footprints and virtual water trade of wood products. AdWR 164, 104188 (2022).

    Google Scholar 

  • Rulli, M. C., Bellomi, D., Cazzoli, A., De Carolis, G. & D’Odorico, P. The water–land–food nexus of first-generation biofuels. Sci. Rep. 6, 22521 (2016).

    Article 

    Google Scholar 

  • Zhang, J. C. et al. International energy trade impacts on water resource crises: an embodied water flows perspective. Environ. Res. Lett. 11, 074023 (2016).

    Article 

    Google Scholar 

  • D’Odorico, P. et al. Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 14, 053001 (2019).

    Article 

    Google Scholar 

  • Sun, J. X. et al. Review on research status of virtual water: the perspective of accounting methods, impact assessment and limitations. Agric. Water Manag. 243, 106407 (2021).

    Article 

    Google Scholar 

  • Tamea, S., Tuninetti, M., Soligno, I. & Laio, F. Virtual water trade and water footprint of agricultural goods: the 1961–2016 CWASI database. Earth Syst. Sci. Data 13, 2025–2051 (2021).

    Article 

    Google Scholar 

  • Leontief, W. & Strout, A. in Structural Interdependence and Economic Development (ed. Barna, T.) 119–150 (Macmillan, 1963).

  • Tukker, A. & Dietzenbacher, E. Global multiregional input–output frameworks: an introduction and outlook introduction. Econ. Syst. Res. 25, 1–19 (2013).

    Article 

    Google Scholar 

  • Feng, K. & Hubacek, K. in Handbook of Research Methods and Applications in Environmental Studies (Edward Elgar, 2015).

  • Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. Recent history and geography of virtual water trade. PLoS ONE 8, e55825 (2013).

    Article 

    Google Scholar 

  • Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl Acad. Sci. USA 109, 5989–5994 (2012).

    Article 

    Google Scholar 

  • Porkka, M., Kummu, M., Siebert, S. & Varis, O. From food insufficiency towards trade dependency: a historical analysis of global food availability. PLoS ONE 8, e82714 (2013).

    Article 

    Google Scholar 

  • MacDonald, G. K. et al. Rethinking agricultural trade relationships in an era of globalization. Bioscience 65, 275–289 (2015).

    Article 

    Google Scholar 

  • Zhang, Y., Zhang, J., Tang, G., Chen, M. & Wang, L. Virtual water flows in the international trade of agricultural products of China. Sci. Total. Environ. 557-558, 1–11 (2016).

    Article 

    Google Scholar 

  • Da Silva, V. D. P. R. et al. Water footprint and virtual water trade of Brazil. Water 8, 517 (2016).

    Article 

    Google Scholar 

  • Carr, C. J. in River Basin Development and Human Rights in Eastern Africa — A Policy Crossroads (ed. Carr, C. J.) 75–84 (Springer, 2017).

  • Carr, J. A. & D’Odorico, P. in Water Diplomacy in Action: Contingent Approaches to Managing Complex Water Problems (eds Islam, S. & Madani, K.) 95–110 (Anthem, 2017).

  • Tamea, S., Carr, J. A., Laio, F. & Ridolfi, L. Drivers of the virtual water trade. Water Resour. Res. 50, 17–28 (2014).

    Article 

    Google Scholar 

  • Fracasso, A., Sartori, M. & Schiavo, S. Determinants of virtual water flows in the Mediterranean. Sci. Total. Environ. 543, 1054–1062 (2016).

    Article 

    Google Scholar 

  • Chouchane, H., Krol, M. S. & Hoekstra, A. Y. Virtual water trade patterns in relation to environmental and socioeconomic factors: a case study for Tunisia. Sci. Total. Environ. 613, 287–297 (2018).

    Article 

    Google Scholar 

  • D’Odorico, P. et al. The global food–energy–water nexus. Rev. Geophys. 56, 456–531 (2018).

    Article 

    Google Scholar 

  • Mekonnen, M. M., Gerbens-Leenes, P. W. & Hoekstra, A. The consumptive water footprint of electricity and heat: a global assessment. Environ. Sci. Water Res. Technol. 1, 285–297 (2015).

    Article 

    Google Scholar 

  • Macknick, J., Newmark, R., Heath, G. & Hallett, K. C. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ. Res. Lett. 7, 045802 (2012).

    Article 

    Google Scholar 

  • Rosa, L., Davis, K. F., Rulli, M. C. & D’Odorico, P. Environmental consequences of oil production from oil sands. Earth’s Future 5, 158–170 (2017).

    Article 

    Google Scholar 

  • Meldrum, J., Nettles-Anderson, S., Heath, G. & Macknick, J. Life cycle water use for electricity generation: a review and harmonization of literature estimates. Environ. Res. Lett. 8, 015031 (2013).

    Article 

    Google Scholar 

  • Jin, Y., Behrens, P., Tukker, A. & Scherer, L. Water use of electricity technologies: a global meta-analysis. Renew. Sustain. Energy Rev. 115, 109391 (2019).

    Article 

    Google Scholar 

  • Macknick, J., Sattler, S., Averyt, K., Clemmer, S. & Rogers, J. The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050. Environ. Res. Lett. 7, 045803 (2012).

    Article 

    Google Scholar 

  • Mekonnen, M. M., Gerbens-Leenes, P. W. & Hoekstra, A. Y. Future electricity: the challenge of reducing both carbon and water footprint. Sci. Total. Environ. 569–570, 1282–1288 (2016).

    Article 

    Google Scholar 

  • Gerbens-Leenes, W., Hoekstra, A. Y. & van der Meer, T. H. The water footprint of bioenergy. Proc. Natl Acad. Sci. USA 106, 10219–10223 (2009).

    Article 

    Google Scholar 

  • Gabrielli, P. et al. Net-zero emissions chemical industry in a world of limited resources. One Earth 6, 682–704 (2023).

    Article 

    Google Scholar 

  • Tonelli, D. et al. Global land and water limits to electrolytic hydrogen production using wind and solar resources. Nat. Commun. 14, 5532 (2023).

    Article 

    Google Scholar 

  • Chini, C. M., Djehdian, L. A., Lubega, W. N. & Stillwell, A. S. Virtual water transfers of the US electric grid. Nat. Energy 3, 1115–1123 (2018).

    Article 

    Google Scholar 

  • Chini, C. M. & Peer, R. A. M. The traded water footprint of global energy from 2010 to 2018. Sci. Data 8, 7 (2021).

    Article 

    Google Scholar 

  • Peer, R. A. M. & Chini, C. M. An integrated assessment of the global virtual water trade network of energy. Environ. Res. Lett. 15, 114015 (2020).

    Article 

    Google Scholar 

  • Chini, C. M., Nugent, J., Stillwell, A. S. & Peer, R. A. M. A critical review on the accounting of energy in virtual water trade. J. Clean. Prod. 379, 134558 (2022).

    Article 

    Google Scholar 

  • D’Odorico, P. et al. Ancient water supports today’s energy needs. Earth’s Future 5, 515–519 (2017).

    Article 

    Google Scholar 

  • Peer, R. A. M. & Chini, C. M. Historical values of water and carbon intensity of global electricity production. Environ. Res.: Infrastruct. Sustain. 1, 025001 (2021).

    Google Scholar 

  • Liu, L., Yin, Z., Wang, P., Gan, Y. & Liao, X. Water–carbon trade-off for inter-provincial electricity transmissions in China. J. Environ. Manag. 268, 110719 (2020).

    Article 

    Google Scholar 

  • Jin, Y., Behrens, P., Tukker, A. & Scherer, L. The energy–water nexus of China’s interprovincial and seasonal electric power transmission. ApEn 286, 116493 (2021).

    Google Scholar 

  • Gao, X. et al. Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China. ApEn 250, 821–833 (2019).

    Google Scholar 

  • Zhang, Y., Li, J., Tian, Y., Deng, Y. & Xie, K. Virtual water flow associated with interprovincial coal transfer in China: impacts and suggestions for mitigation. J. Clean. Prod. 289, 125800 (2021).

    Article 

    Google Scholar 

  • Feng, K., Siu, Y. L., Guan, D. & Hubacek, K. Assessing regional virtual water flows and water footprints in the Yellow River Basin, China: a consumption based approach. Appl. Geogr. 32, 691–701 (2012).

    Article 

    Google Scholar 

  • Lutter, S., Pfister, S., Giljum, S., Wieland, H. & Mutel, C. Spatially explicit assessment of water embodied in European trade: a product-level multi-regional input-output analysis. Glob. Environ. Change 38, 171–182 (2016).

    Article 

    Google Scholar 

  • Zhang, C. & Anadon, L. D. A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 100, 159–172 (2014).

    Article 

    Google Scholar 

  • Bosch, H. J. & Gupta, J. Water property rights in investor-state contracts on extractive activities, affects water governance: an empirical assessment of 80 contracts in Africa and Asia. Rev. Eur. Comp. Int. Environ. Law 31, 295–316 (2022).

    Article 

    Google Scholar 

  • Chiarelli, D. D. et al. Competition for water induced by transnational land acquisitions for agriculture. Nat. Commun. 13, 505 (2022).

    Article 

    Google Scholar 

  • Rulli, M. C., Saviori, A. & D’Odorico, P. Global land and water grabbing. Proc. Natl Acad. Sci. USA 110, 892–897 (2013).

    Article 

    Google Scholar 

  • Large Scale Land Acquisitions by Negotiation Status (The Land Matrix, 2023); https://landmatrix.org/country-profile/lsla/.

  • Müller, M. F. et al. Impact of transnational land acquisitions on local food security and dietary diversity. Proc. Natl Acad. Sci. USA 118, e2020535118 (2021).

    Article 

    Google Scholar 

  • Jackson, N., Konar, M. & Hoekstra, A. The water footprint of food aid. Sustainability 7, 6435–6456 (2015).

    Article 

    Google Scholar 

  • Global Trends: Forced Displacement in 2022 (UNHCR, 2023).

  • Bertassello, L. et al. Food demand displaced by global refugee migration influences water use in already water stressed countries. Nat. Commun. 14, 2706 (2023).

    Article 

    Google Scholar 

  • Metulini, R., Tamea, S., Laio, F. & Riccaboni, M. The water suitcase of migrants: assessing virtual water fluxes associated to human migration. PLoS ONE 11, e0153982 (2016).

    Article 

    Google Scholar 

  • Allan, J. A. The Middle East Water Question: Hydropolitics and the Global Economy (I. B. Tauris, 2001).

  • Guan, D. & Hubacek, K. Assessment of regional trade and virtual water flows in China. Ecol. Econ. 61, 159–170 (2007).

    Article 

    Google Scholar 

  • Rathore, L. S., Aziz, D., Demeke, B. W. & Mekonnen, M. M. Sustainability assessment of virtual water flows through cereal and milled grain trade among US counties. Environ. Res.: Infrastruct. Sustain. 3, 025001 (2023).

    Google Scholar 

  • Harris, F. et al. Trading water: virtual water flows through interstate cereal trade in India. Environ. Res. Lett. 15, 125005 (2020).

    Article 

    Google Scholar 

  • Rushforth, R. R. & Ruddell, B. L. The vulnerability and resilience of a city’s water footprint: the case of Flagstaff, Arizona, USA. Water Resour. Res. 52, 2698–2714 (2016).

    Article 

    Google Scholar 

  • Djehdian, L. A., Chini, C. M., Marston, L., Konar, M. & Stillwell, A. S. Exposure of urban food–energy–water (FEW) systems to water scarcity. Sustain. Cities Soc. 50, 101621 (2019).

    Article 

    Google Scholar 

  • Richter, B. D. et al. Water scarcity and fish imperilment driven by beef production. Nat. Sustain. 3, 319–328 (2020).

    Article 

    Google Scholar 

  • Marston, L., Konar, M., Cai, X. & Troy, T. J. Virtual groundwater transfers from overexploited aquifers in the United States. Proc. Natl Acad. Sci. USA 112, 8561–8566 (2015).

    Article 

    Google Scholar 

  • Marston, L. & Konar, M. Drought impacts to water footprints and virtual water transfers of the Central Valley of California. Water Resour. Res. 53, 5756–5773 (2017).

    Article 

    Google Scholar 

  • Gumidyala, S. et al. Groundwater depletion embedded in domestic transfers and international exports of the United States. Water Resour. Res. 56, e2019WR024986 (2020).

    Article 

    Google Scholar 

  • Ma, J., Hoekstra, A. Y., Wang, H., Chapagain, A. K. & Wang, D. Virtual versus real water transfers within China. Philos. Trans. R. Soc. B-Biol. Sci. 361, 835–842 (2006).

    Article 

    Google Scholar 

  • Zhao, X. et al. Physical and virtual water transfers for regional water stress alleviation in China. Proc. Natl Acad. Sci. USA 112, 1031–1035 (2015).

    Article 

    Google Scholar 

  • Verma, S., Kampman, D. A., van der Zaag, P. & Hoekstra, A. Y. Going against the flow: a critical analysis of inter-state virtual water trade in the context of India’s National River Linking Program. PCE 34, 261–269 (2009).

    Google Scholar 

  • Wang, W., Gao, L., Liu, P. & Hailu, A. Relationships between regional economic sectors and water use in a water-scarce area in China: a quantitative analysis. JHyd 515, 180–190 (2014).

    Google Scholar 

  • Dalin, C., Hanasaki, N., Qiu, H., Mauzerall, D. L. & Rodriguez-Iturbe, I. Water resources transfers through Chinese interprovincial and foreign food trade. Proc. Natl Acad. Sci. USA 111, 9774–9779 (2014).

    Article 

    Google Scholar 

  • Chini, C. M. & Stillwell, A. S. The changing virtual water trade network of the European electric grid. Appl. Energy 260, 114151 (2020).

    Article 

    Google Scholar 

  • Zhang, C. et al. Virtual scarce water embodied in inter-provincial electricity transmission in China. Appl. Energy 187, 438–448 (2017).

    Article 

    Google Scholar 

  • Chapagain, A. K., Hoekstra, A. Y. & Savenije, H. H. G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 10, 455–468 (2006).

    Article 

    Google Scholar 

  • Konar, M., Hussein, Z., Hanasaki, N., Mauzerall, D. L. & Rodriguez-Iturbe, I. Virtual water trade flows and savings under climate change. Hydrol. Earth Syst. Sci. 17, 3219–3234 (2013).

    Article 

    Google Scholar 

  • Marston, L. T. et al. Reducing water scarcity by improving water productivity in the United States. Environ. Res. Lett. 15, 094033 (2020).

    Article 

    Google Scholar 

  • Liu, W. et al. Savings and losses of global water resources in food-related virtual water trade. WIREs Water 6, e1320 (2019).

    Article 

    Google Scholar 

  • Carr, J. A., Seekell, D. A. & D’Odorico, P. Inequality or injustice in water use for food? Environ. Res. Lett. 10, 024013 (2015).

    Article 

    Google Scholar 

  • Seekell, D. A. Does the global trade of virtual water reduce inequality in freshwater resource allocation? Soc. Nat. Resour. 24, 1205–1215 (2011).

    Article 

    Google Scholar 

  • Seekell, D. A., D’Odorico, P. & Pace, M. L. Virtual water transfers unlikely to redress inequality in global water use. Environ. Res. Lett. 6, 024017 (2011).

    Article 

    Google Scholar 

  • Yang, H., Reichert, P., Abbaspour, K. C. & Zehnder, A. J. B. A water resources threshold and its implications for food security. Environ. Sci. Technol. 37, 3048–3054 (2003).

    Article 

    Google Scholar 

  • Oki, T., Yano, S. & Hanasaki, N. Economic aspects of virtual water trade. Environ. Res. Lett. 12, 044002 (2017).

    Article 

    Google Scholar 

  • Suweis, S. et al. Structure and controls of the global virtual water trade network. Geophys. Res. Lett. 38, L10403 (2011).

    Article 

    Google Scholar 

  • Tuninetti, M., Tamea, S., Laio, F. & Ridolfi, L. To trade or not to trade: link prediction in the virtual water network. AdWR 110, 528–537 (2017).

    Google Scholar 

  • Dalin, C., Suweis, S., Konar, M., Hanasaki, N. & Rodriguez-Iturbe, I. Modeling past and future structure of the global virtual water trade network. Geophys. Res. Lett. (2012).

  • Xia, W., Chen, X., Song, C. & Pérez-Carrera, A. Driving factors of virtual water in international grain trade: a study for belt and road countries. Agric. Water Manage. 262, 107441 (2022).

    Article 

    Google Scholar 

  • Fracasso, A. A gravity model of virtual water trade. Ecol. Econ. 108, 215–228 (2014).

    Article 

    Google Scholar 

  • Kumar, M. D. & Singh, O. P. Virtual water in global food and water policy making: is there a need for rethinking? Water Resour. Manage. 19, 759–789 (2005).

    Article 

    Google Scholar 

  • Zhao, D., Hubacek, K., Feng, K., Sun, L. & Liu, J. Explaining virtual water trade: a spatial-temporal analysis of the comparative advantage of land, labor and water in China. Water Res. 153, 304–314 (2019).

    Article 

    Google Scholar 

  • Graham, N. T. et al. Future changes in the trading of virtual water. Nat. Commun. 11, 3632 (2020).

    Article 

    Google Scholar 

  • He, L. & Rosa, L. Solutions to agricultural green water scarcity under climate change. PNAS Nexus (2023).

  • Wang, R., Hertwich, E. & Zimmerman, J. B. (Virtual) water flows uphill toward money. Environ. Sci. Technol. 50, 12320–12330 (2016).

    Article 

    Google Scholar 

  • Liu, J. et al. Coupled human and natural systems: the evolution and applications of an integrated framework. Ambio 50, 1778–1783 (2021).

    Article 

    Google Scholar 

  • Hoekstra, A. Y. & Mekonnen, M. M. Imported water risk: the case of the UK. Environ. Res. Lett. 11, 055002 (2016).

    Article 

    Google Scholar 

  • Wu, X. J. et al. Identifying optimal virtual water management strategy for Kazakhstan: a factorial ecologically-extended input–output model. J. Environ. Manag. 297, 113303 (2021).

    Article 

    Google Scholar 

  • Duarte, R. & Yang, H. Input–output and water: introduction to the special issue. Econ. Syst. Res. 23, 341–351 (2011).

    Article 

    Google Scholar 

  • Feng, K., Chapagain, A., Suh, S., Pfister, S. & Hubacek, K. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. Econ. Syst. Res. 23, 371–385 (2011).

    Article 

    Google Scholar 

  • Ali, T., Xie, W., Zhu, A. & Davis, K. F. Accounting for re-exports substantially reduces China’s virtual water demand through agricultural trade. Environ. Res. Lett. 16, 045002 (2021).

    Article 

    Google Scholar 

  • Rosa, L., Chiarelli, D. D., Tu, C., Rulli, M. C. & D’Odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. 14, 114001 (2019).

    Article 

    Google Scholar 

  • Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint linked to national consumption and international trade is unsustainable. Nat. Food 1, 792–800 (2020).

    Article 

    Google Scholar 

  • Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700 (2017).

    Article 

    Google Scholar 

  • Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    Article 

    Google Scholar 

  • Barnett, T. P. & Pierce, D. W. Sustainable water deliveries from the Colorado River in a changing climate. Proc. Natl Acad. Sci. USA 106, 7334–7338 (2009).

    Article 

    Google Scholar 

  • Barnett, T. P. & Pierce, D. W. When will Lake Mead go dry? Water Resour. Res. (2008).

  • Bureau of Reclamation. Colorado River Basin Water Supply and Demand Study (US Department of the Interior, 2012).

  • Hartman, S., Chiarelli, D. D., Rulli, M. C. & D’Odorico, P. A growing produce bubble: United States produce tied to Mexico’s unsustainable agricultural water use. Environ. Res. Lett. 16, 105008 (2021).

    Article 

    Google Scholar 

  • Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article 

    Google Scholar 

  • World Trade Report 2017: Trade, Technology and Jobs (WTO, 2017).

  • Economic Bulletin 7 (European Central Bank, 2017).

  • Felbermayr, G., Prat, J. & Schmerer, H.-J. Trade and unemployment: what do the data say? Europ. Econ. Rev. 55, 741–758 (2011).

    Article 

    Google Scholar 

  • Fugazza, M., Carrère, C., Olarreaga, M. & Robert-Nicoud, F. Trade in Unemployment, Policy Issues in International Trade and Commodities (UNCTAD, 2014).

  • Trade (World Bank, 2022).

  • Allan, J. A. Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible. Priorities Water Resour. Allocation Manag. 13, 26 (1993).

    Google Scholar 

  • Carr, J., D’Odorico, P., Laio, F., Ridolfi, L. & Seekell, D. Inequalities in the networks of virtual water flow. Eos Trans. Am. Geophys. Union. 93, 309 (2012).

    Article 

    Google Scholar 

  • Bouët, A. & Laborde Debucquet, D. Agriculture, Development, and the Global Trading System: 2000–2015 (International Food Policy Research Institute, 2017).

  • Ge, J. et al. Food and nutrition security under global trade: a relation-driven agent-based global trade model. R. Soc. Open. Sci. 8, 201587 (2021).

    Article 

    Google Scholar 

  • Martin, W. Agricultural Trade and Food Security. ADBI Working Paper 664 (Asian Development Bank Institute, 2017).

  • Sun, Z. & Zhang, D. Impact of trade openness on food security: evidence from panel data for central Asian countries. Foods 10, 3012 (2021).

    Article 

    Google Scholar 

  • Chai, L. et al. Telecoupled impacts of the Russia–Ukraine war on global cropland expansion and biodiversity. Nat. Sustain. (2024).

  • Shumilova, O. et al. Impact of the Russia–Ukraine armed conflict on water resources and water infrastructure. Nat. Sustain. 6, 578–586 (2023).

    Article 

    Google Scholar 

  • Sun, Y., Li, C. & Sheng, Y. Effects of virtual water strategy on water conservation and socioeconomic development in water-scare regions. J. Clean. Prod. 368, 133152 (2022).

    Article 

    Google Scholar 

  • D’Odorico, P., Laio, F. & Ridolfi, L. Does globalization of water reduce societal resilience to drought? Geophys. Res. Lett. 37, L13403 (2010).

    Google Scholar 

  • Tamea, S., Laio, F. & Ridolfi, L. Global effects of local food-production crises: a virtual water perspective. Sci. Rep. 6, 18803 (2016).

    Article 

    Google Scholar 

  • Naylor, R. et al. Losing the links between livestock and land. Science 310, 1621–1622 (2005).

    Article 

    Google Scholar 

  • Gawel, E. & Bernsen, K. What is wrong with virtual water trading? On the limitations of the virtual water concept. Environ. Plan. C 31, 168–181 (2013).

    Article 

    Google Scholar 

  • Wichelns, D. Virtual water: a helpful perspective, but not a sufficient policy criterion. Water Resour. Manage. 24, 2203–2219 (2010).

    Article 

    Google Scholar 

  • Wichelns, D. Virtual water and water footprints offer limited insight regarding important policy questions. Int. J. Water Resour. Dev. 26, 639–651 (2010).

    Article 

    Google Scholar 

  • Feenstra, R. C. Advanced International Trade: Theory and Evidence. (Princeton Univ. Press, 2015).

  • Romalis, J. Factor proportions and the structure of commodity trade. Am. Econ. Rev. 94, 67–97 (2004).

    Article 

    Google Scholar 

  • Reimer, J. J. On the economics of virtual water trade. Ecol. Econ. 75, 135–139 (2012).

    Article 

    Google Scholar 

  • Debaere, P. The global economics of water: is water a source of comparative advantage? Am. Econ. J.: Appl. Econ. 6, 32–48 (2014).

    Google Scholar 

  • Debaere, P. & Kurzendoerfer, A. Decomposing US water withdrawal since 1950. J. Assoc. Environ. Resour. Econ. 4, 155–196 (2017).

    Google Scholar 

  • Debaere, P. & Konar, M. Water resources and trade: a research vision. PLOS Water 1, e0000010 (2022).

    Article 

    Google Scholar 

  • Davis, D. & Weinstein, D. The Factor Content of Trade (Columbia Univ., 2002).

  • Martinez-Alier, J. The Environmentalism of the Poor: A Study of Ecological Conflicts and Valuation. (Edward Elgar, 2003).

  • Rice, J. Ecological unequal exchange: consumption, equity, and unsustainable structural relationships within the global economy. Int. J. Comp. Sociol. 48, 43–72 (2007).

    Article 

    Google Scholar 

  • Friedmann, H. The political economy of food: a global crisis. N. Left Rev. 197, 29–57 (1993).

    Google Scholar 

  • Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. On the temporal variability of the virtual water network. Geophys. Res. Lett. 39, L06404 (2012).

    Article 

    Google Scholar 

  • O’Bannon, C., Carr, J., Seekell, D. A. & D’Odorico, P. Globalization of agricultural pollution due to international trade. Hydrol. Earth Syst. Sci. 18, 503–510 (2014).

    Article 

    Google Scholar 

  • D’Odorico, P., Rulli, M. C., Dell’Angelo, J. & Davis, K. F. New frontiers of land and water commodification: socio-environmental controversies of large-scale land acquisitions. LDD 28, 2234–2244 (2017).

    Google Scholar 

  • Tuninetti, M., Tamea, S. & Dalin, C. Water debt indicator reveals where agricultural water use exceeds sustainable levels. Water Resour. Res. 55, 2464–2477 (2019).

    Article 

    Google Scholar 

  • Thaler, T. Social justice in socio-hydrology — how we can integrate the two different perspectives. Hydrol. Sci. J. 66, 1503–1512 (2021).

    Article 

    Google Scholar 

  • Zeitoun, M. et al. Transboundary water justice: a combined reading of literature on critical transboundary water interaction and ‘justice’, for analysis and diplomacy. Water Policy 16, 174–193 (2014).

    Article 

    Google Scholar 

  • Pahl-Wostl, C., Gupta, J. & Petry, D. Governance and the global water system: a theoretical exploration. Glob. Gov. 14, 419–435 (2008).

    Article 

    Google Scholar 

  • Sartori, M., Schiavo, S., Fracasso, A. & Riccaboni, M. Modeling the future evolution of the virtual water trade network: a combination of network and gravity models. AdWR 110, 538–548 (2017).

    Google Scholar 

  • Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).

  • Zhang, F., Jin, G. & Liu, G. Evaluation of virtual water trade in the Yellow River Delta, China. Sci. Total. Environ. 784, 147285 (2021).

    Article 

    Google Scholar 

  • Chen, Z.-M. & Chen, G. Q. Virtual water accounting for the globalized world economy: national water footprint and international virtual water trade. Ecol. Indic. 28, 142–149 (2013).

    Article 

    Google Scholar 

  • Cazcarro, I., Duarte, R. & Sánchez Chóliz, J. Multiregional input–output model for the evaluation of Spanish water flows. Environ. Sci. Technol. 47, 12275–12283 (2013).

    Article 

    Google Scholar 

  • Steen-Olsen, K., Weinzettel, J., Cranston, G., Ercin, A. E. & Hertwich, E. G. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade. Environ. Sci. Technol. 46, 10883–10891 (2012).

    Article 

    Google Scholar 

  • Tukker, A. et al. The Global Resource Footprint of Nations. Carbon, Water, Land and Materials Embodied in Trade and Final Consumption Calculated with EXIOBASE 2.1 (Netherlands Organisation for Applied Scientific Research/Leiden Univ./Vienna Univ. of Economics and Business/Norwegian Univ. of Science and Technology, 2014).

  • Mubako, S., Lahiri, S. & Lant, C. Input–output analysis of virtual water transfers: case study of California and Illinois. Ecol. Econ. 93, 230–238 (2013).

    Article 

    Google Scholar 

  • Dietzenbacher, E. & Velázquez, E. Analysing Andalusian virtual water trade in an input–output framework. Reg. Stud. 41, 185–196 (2007).

    Article 

    Google Scholar 

  • Gkatsikos, A. & Mattas, K. The paradox of the virtual water trade balance in the Mediterranean region. Sustainability 13, 2978 (2021).

    Article 

    Google Scholar 

  • Zhang, Y., Fang, J., Wang, S. & Yao, H. Energy–water nexus in electricity trade network: a case study of interprovincial electricity trade in China. Appl. Energy 257, 113685 (2020).

    Article 

    Google Scholar 

  • Liao, X., Zhao, X., Hall, J. W. & Guan, D. Categorising virtual water transfers through China’s electric power sector. Appl. Energy 226, 252–260 (2018).

    Article 

    Google Scholar 

  • Yu, Y., Hubacek, K., Feng, K. & Guan, D. Assessing regional and global water footprints for the UK. Ecol. Econ. 69, 1140–1147 (2010).

    Article 

    Google Scholar 

  • Wang, L., Fan, Y. V., Jiang, P., Varbanov, P. S. & Klemeš, J. J. Virtual water and CO2 emission footprints embodied in power trade: EU-27. Energy Policy 155, 112348 (2021).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.