Trends and environmental impacts of virtual water trade
Postel, S. L. Entering an era of water scarcity: the challenges ahead. Ecol. Appl. 10, 941–948 (2000).
Google Scholar
Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).
Google Scholar
van Vliet, M. T. H. et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 16, 024020 (2021).
Google Scholar
Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).
Google Scholar
Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res. 48, 2055 (2012).
Google Scholar
Scanlon, B. R. et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 4, 87–101 (2023).
Google Scholar
van Vliet, M. T. H., Flörke, M. & Wada, Y. Quality matters for water scarcity. Nat. Geosci. 10, 800–802 (2017).
Google Scholar
Wang, M. et al. A triple increase in global river basins with water scarcity due to future pollution. Nat. Commun. 15, 880 (2024).
Google Scholar
Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
Google Scholar
Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Biodiversity Synthesis (World Resources Institute, 2005).
Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).
Google Scholar
Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).
Google Scholar
Beltran-Peña, A., Rosa, L. & D’Odorico, P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ. Res. Lett. 15, 095004 (2020).
Google Scholar
United Nations World Water Assessment Programme. The United Nations World Water Development Report 2015: Water for a Sustainable World (UNESCO, 2015).
Vörösmarty, C. J., Hoekstra, A. Y., Bunn, S. E., Conway, D. & Gupta, J. Fresh water goes global. Science 349, 478–479 (2015).
Google Scholar
Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).
Google Scholar
Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
Google Scholar
Searchinger, T., Edwards, R., Mulligan, D., Heimlich, R. & Plevin, R. Do biofuel policies seek to cut emissions by cutting food? Science 347, 1420–1422 (2015).
Google Scholar
Searchinger, T. et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).
Google Scholar
Welch, H., Green, C. T., Rebich, R. A., Barlow, J. R. B. & Hicks, M. Unintended Consequences of Biofuels Production: The Effects of Large-Scale Crop Conversion on Water Quality and Quantity (US Geological Survey, 2010); https://pubs.usgs.gov/of/2010/1229/.
Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).
Google Scholar
Haqiqi, I. et al. Global drivers of local water stresses and global responses to local water policies in the United States. Environ. Res. Lett. 18, 065007 (2023).
Google Scholar
Allan, J. A. Virtual Water: Tackling the Threat to Our Planet’s Most Precious Resource (Tauris, 2011).
Chapagain, A. K. & Hoekstra, A. Y. The global component of freshwater demand and supply: an assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water Int. 33, 19–32 (2008).
Google Scholar
Oki, T. & Kanae, S. Virtual water trade and world water resources. Water Sci. Technol. 49, 203–209 (2004).
Google Scholar
Liu, J. et al. Spillover systems in a telecoupled Anthropocene: typology, methods, and governance for global sustainability. Curr. Opin. Env. Sust. 33, 58–69 (2018).
Google Scholar
Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. (2013).
Allan, J. A. Virtual water: a strategic resource: global solutions to regional deficits. Groundwater 36, 545 (1998).
Google Scholar
Allan, J. A. Virtual water — the water, food, and trade nexus: useful concept or misleading metaphor? Water Int. 28, 106–113 (2003).
Google Scholar
Hoekstra, A. Y. Virtual water trade. Proceedings of the International Expert Meeting on Virtual Water Trade Report No. 12 (UNESCO-IHE, 2003).
Hoekstra, A. Y. The Water Footprint of Modern Consumer Society 2nd edn (Routledge, 2019).
Hoekstra, A. Y. & Chapagain, A. K. Globalization of Water: Sharing the Planet’s Freshwater Resources (Blackwell, 2008).
Hanasaki, N., Inuzuka, T., Kanae, S. & Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384, 232–244 (2010).
Google Scholar
Hou, S., Xu, M. & Qu, S. The ‘Gravity’ for global virtual water flows: from quantity and quality perspectives. J. Environ. Manag. 329, 116984 (2023).
Google Scholar
Cazcarro, I., Schyns, J. F., Arto, I. & Sanz, M. J. Nations’ water footprints and virtual water trade of wood products. AdWR 164, 104188 (2022).
Rulli, M. C., Bellomi, D., Cazzoli, A., De Carolis, G. & D’Odorico, P. The water–land–food nexus of first-generation biofuels. Sci. Rep. 6, 22521 (2016).
Google Scholar
Zhang, J. C. et al. International energy trade impacts on water resource crises: an embodied water flows perspective. Environ. Res. Lett. 11, 074023 (2016).
Google Scholar
D’Odorico, P. et al. Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 14, 053001 (2019).
Google Scholar
Sun, J. X. et al. Review on research status of virtual water: the perspective of accounting methods, impact assessment and limitations. Agric. Water Manag. 243, 106407 (2021).
Google Scholar
Tamea, S., Tuninetti, M., Soligno, I. & Laio, F. Virtual water trade and water footprint of agricultural goods: the 1961–2016 CWASI database. Earth Syst. Sci. Data 13, 2025–2051 (2021).
Google Scholar
Leontief, W. & Strout, A. in Structural Interdependence and Economic Development (ed. Barna, T.) 119–150 (Macmillan, 1963).
Tukker, A. & Dietzenbacher, E. Global multiregional input–output frameworks: an introduction and outlook introduction. Econ. Syst. Res. 25, 1–19 (2013).
Google Scholar
Feng, K. & Hubacek, K. in Handbook of Research Methods and Applications in Environmental Studies (Edward Elgar, 2015).
Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. Recent history and geography of virtual water trade. PLoS ONE 8, e55825 (2013).
Google Scholar
Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl Acad. Sci. USA 109, 5989–5994 (2012).
Google Scholar
Porkka, M., Kummu, M., Siebert, S. & Varis, O. From food insufficiency towards trade dependency: a historical analysis of global food availability. PLoS ONE 8, e82714 (2013).
Google Scholar
MacDonald, G. K. et al. Rethinking agricultural trade relationships in an era of globalization. Bioscience 65, 275–289 (2015).
Google Scholar
Zhang, Y., Zhang, J., Tang, G., Chen, M. & Wang, L. Virtual water flows in the international trade of agricultural products of China. Sci. Total. Environ. 557-558, 1–11 (2016).
Google Scholar
Da Silva, V. D. P. R. et al. Water footprint and virtual water trade of Brazil. Water 8, 517 (2016).
Google Scholar
Carr, C. J. in River Basin Development and Human Rights in Eastern Africa — A Policy Crossroads (ed. Carr, C. J.) 75–84 (Springer, 2017).
Carr, J. A. & D’Odorico, P. in Water Diplomacy in Action: Contingent Approaches to Managing Complex Water Problems (eds Islam, S. & Madani, K.) 95–110 (Anthem, 2017).
Tamea, S., Carr, J. A., Laio, F. & Ridolfi, L. Drivers of the virtual water trade. Water Resour. Res. 50, 17–28 (2014).
Google Scholar
Fracasso, A., Sartori, M. & Schiavo, S. Determinants of virtual water flows in the Mediterranean. Sci. Total. Environ. 543, 1054–1062 (2016).
Google Scholar
Chouchane, H., Krol, M. S. & Hoekstra, A. Y. Virtual water trade patterns in relation to environmental and socioeconomic factors: a case study for Tunisia. Sci. Total. Environ. 613, 287–297 (2018).
Google Scholar
D’Odorico, P. et al. The global food–energy–water nexus. Rev. Geophys. 56, 456–531 (2018).
Google Scholar
Mekonnen, M. M., Gerbens-Leenes, P. W. & Hoekstra, A. The consumptive water footprint of electricity and heat: a global assessment. Environ. Sci. Water Res. Technol. 1, 285–297 (2015).
Google Scholar
Macknick, J., Newmark, R., Heath, G. & Hallett, K. C. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ. Res. Lett. 7, 045802 (2012).
Google Scholar
Rosa, L., Davis, K. F., Rulli, M. C. & D’Odorico, P. Environmental consequences of oil production from oil sands. Earth’s Future 5, 158–170 (2017).
Google Scholar
Meldrum, J., Nettles-Anderson, S., Heath, G. & Macknick, J. Life cycle water use for electricity generation: a review and harmonization of literature estimates. Environ. Res. Lett. 8, 015031 (2013).
Google Scholar
Jin, Y., Behrens, P., Tukker, A. & Scherer, L. Water use of electricity technologies: a global meta-analysis. Renew. Sustain. Energy Rev. 115, 109391 (2019).
Google Scholar
Macknick, J., Sattler, S., Averyt, K., Clemmer, S. & Rogers, J. The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050. Environ. Res. Lett. 7, 045803 (2012).
Google Scholar
Mekonnen, M. M., Gerbens-Leenes, P. W. & Hoekstra, A. Y. Future electricity: the challenge of reducing both carbon and water footprint. Sci. Total. Environ. 569–570, 1282–1288 (2016).
Google Scholar
Gerbens-Leenes, W., Hoekstra, A. Y. & van der Meer, T. H. The water footprint of bioenergy. Proc. Natl Acad. Sci. USA 106, 10219–10223 (2009).
Google Scholar
Gabrielli, P. et al. Net-zero emissions chemical industry in a world of limited resources. One Earth 6, 682–704 (2023).
Google Scholar
Tonelli, D. et al. Global land and water limits to electrolytic hydrogen production using wind and solar resources. Nat. Commun. 14, 5532 (2023).
Google Scholar
Chini, C. M., Djehdian, L. A., Lubega, W. N. & Stillwell, A. S. Virtual water transfers of the US electric grid. Nat. Energy 3, 1115–1123 (2018).
Google Scholar
Chini, C. M. & Peer, R. A. M. The traded water footprint of global energy from 2010 to 2018. Sci. Data 8, 7 (2021).
Google Scholar
Peer, R. A. M. & Chini, C. M. An integrated assessment of the global virtual water trade network of energy. Environ. Res. Lett. 15, 114015 (2020).
Google Scholar
Chini, C. M., Nugent, J., Stillwell, A. S. & Peer, R. A. M. A critical review on the accounting of energy in virtual water trade. J. Clean. Prod. 379, 134558 (2022).
Google Scholar
D’Odorico, P. et al. Ancient water supports today’s energy needs. Earth’s Future 5, 515–519 (2017).
Google Scholar
Peer, R. A. M. & Chini, C. M. Historical values of water and carbon intensity of global electricity production. Environ. Res.: Infrastruct. Sustain. 1, 025001 (2021).
Liu, L., Yin, Z., Wang, P., Gan, Y. & Liao, X. Water–carbon trade-off for inter-provincial electricity transmissions in China. J. Environ. Manag. 268, 110719 (2020).
Google Scholar
Jin, Y., Behrens, P., Tukker, A. & Scherer, L. The energy–water nexus of China’s interprovincial and seasonal electric power transmission. ApEn 286, 116493 (2021).
Gao, X. et al. Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China. ApEn 250, 821–833 (2019).
Zhang, Y., Li, J., Tian, Y., Deng, Y. & Xie, K. Virtual water flow associated with interprovincial coal transfer in China: impacts and suggestions for mitigation. J. Clean. Prod. 289, 125800 (2021).
Google Scholar
Feng, K., Siu, Y. L., Guan, D. & Hubacek, K. Assessing regional virtual water flows and water footprints in the Yellow River Basin, China: a consumption based approach. Appl. Geogr. 32, 691–701 (2012).
Google Scholar
Lutter, S., Pfister, S., Giljum, S., Wieland, H. & Mutel, C. Spatially explicit assessment of water embodied in European trade: a product-level multi-regional input-output analysis. Glob. Environ. Change 38, 171–182 (2016).
Google Scholar
Zhang, C. & Anadon, L. D. A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 100, 159–172 (2014).
Google Scholar
Bosch, H. J. & Gupta, J. Water property rights in investor-state contracts on extractive activities, affects water governance: an empirical assessment of 80 contracts in Africa and Asia. Rev. Eur. Comp. Int. Environ. Law 31, 295–316 (2022).
Google Scholar
Chiarelli, D. D. et al. Competition for water induced by transnational land acquisitions for agriculture. Nat. Commun. 13, 505 (2022).
Google Scholar
Rulli, M. C., Saviori, A. & D’Odorico, P. Global land and water grabbing. Proc. Natl Acad. Sci. USA 110, 892–897 (2013).
Google Scholar
Large Scale Land Acquisitions by Negotiation Status (The Land Matrix, 2023); https://landmatrix.org/country-profile/lsla/.
Müller, M. F. et al. Impact of transnational land acquisitions on local food security and dietary diversity. Proc. Natl Acad. Sci. USA 118, e2020535118 (2021).
Google Scholar
Jackson, N., Konar, M. & Hoekstra, A. The water footprint of food aid. Sustainability 7, 6435–6456 (2015).
Google Scholar
Global Trends: Forced Displacement in 2022 (UNHCR, 2023).
Bertassello, L. et al. Food demand displaced by global refugee migration influences water use in already water stressed countries. Nat. Commun. 14, 2706 (2023).
Google Scholar
Metulini, R., Tamea, S., Laio, F. & Riccaboni, M. The water suitcase of migrants: assessing virtual water fluxes associated to human migration. PLoS ONE 11, e0153982 (2016).
Google Scholar
Allan, J. A. The Middle East Water Question: Hydropolitics and the Global Economy (I. B. Tauris, 2001).
Guan, D. & Hubacek, K. Assessment of regional trade and virtual water flows in China. Ecol. Econ. 61, 159–170 (2007).
Google Scholar
Rathore, L. S., Aziz, D., Demeke, B. W. & Mekonnen, M. M. Sustainability assessment of virtual water flows through cereal and milled grain trade among US counties. Environ. Res.: Infrastruct. Sustain. 3, 025001 (2023).
Harris, F. et al. Trading water: virtual water flows through interstate cereal trade in India. Environ. Res. Lett. 15, 125005 (2020).
Google Scholar
Rushforth, R. R. & Ruddell, B. L. The vulnerability and resilience of a city’s water footprint: the case of Flagstaff, Arizona, USA. Water Resour. Res. 52, 2698–2714 (2016).
Google Scholar
Djehdian, L. A., Chini, C. M., Marston, L., Konar, M. & Stillwell, A. S. Exposure of urban food–energy–water (FEW) systems to water scarcity. Sustain. Cities Soc. 50, 101621 (2019).
Google Scholar
Richter, B. D. et al. Water scarcity and fish imperilment driven by beef production. Nat. Sustain. 3, 319–328 (2020).
Google Scholar
Marston, L., Konar, M., Cai, X. & Troy, T. J. Virtual groundwater transfers from overexploited aquifers in the United States. Proc. Natl Acad. Sci. USA 112, 8561–8566 (2015).
Google Scholar
Marston, L. & Konar, M. Drought impacts to water footprints and virtual water transfers of the Central Valley of California. Water Resour. Res. 53, 5756–5773 (2017).
Google Scholar
Gumidyala, S. et al. Groundwater depletion embedded in domestic transfers and international exports of the United States. Water Resour. Res. 56, e2019WR024986 (2020).
Google Scholar
Ma, J., Hoekstra, A. Y., Wang, H., Chapagain, A. K. & Wang, D. Virtual versus real water transfers within China. Philos. Trans. R. Soc. B-Biol. Sci. 361, 835–842 (2006).
Google Scholar
Zhao, X. et al. Physical and virtual water transfers for regional water stress alleviation in China. Proc. Natl Acad. Sci. USA 112, 1031–1035 (2015).
Google Scholar
Verma, S., Kampman, D. A., van der Zaag, P. & Hoekstra, A. Y. Going against the flow: a critical analysis of inter-state virtual water trade in the context of India’s National River Linking Program. PCE 34, 261–269 (2009).
Wang, W., Gao, L., Liu, P. & Hailu, A. Relationships between regional economic sectors and water use in a water-scarce area in China: a quantitative analysis. JHyd 515, 180–190 (2014).
Dalin, C., Hanasaki, N., Qiu, H., Mauzerall, D. L. & Rodriguez-Iturbe, I. Water resources transfers through Chinese interprovincial and foreign food trade. Proc. Natl Acad. Sci. USA 111, 9774–9779 (2014).
Google Scholar
Chini, C. M. & Stillwell, A. S. The changing virtual water trade network of the European electric grid. Appl. Energy 260, 114151 (2020).
Google Scholar
Zhang, C. et al. Virtual scarce water embodied in inter-provincial electricity transmission in China. Appl. Energy 187, 438–448 (2017).
Google Scholar
Chapagain, A. K., Hoekstra, A. Y. & Savenije, H. H. G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 10, 455–468 (2006).
Google Scholar
Konar, M., Hussein, Z., Hanasaki, N., Mauzerall, D. L. & Rodriguez-Iturbe, I. Virtual water trade flows and savings under climate change. Hydrol. Earth Syst. Sci. 17, 3219–3234 (2013).
Google Scholar
Marston, L. T. et al. Reducing water scarcity by improving water productivity in the United States. Environ. Res. Lett. 15, 094033 (2020).
Google Scholar
Liu, W. et al. Savings and losses of global water resources in food-related virtual water trade. WIREs Water 6, e1320 (2019).
Google Scholar
Carr, J. A., Seekell, D. A. & D’Odorico, P. Inequality or injustice in water use for food? Environ. Res. Lett. 10, 024013 (2015).
Google Scholar
Seekell, D. A. Does the global trade of virtual water reduce inequality in freshwater resource allocation? Soc. Nat. Resour. 24, 1205–1215 (2011).
Google Scholar
Seekell, D. A., D’Odorico, P. & Pace, M. L. Virtual water transfers unlikely to redress inequality in global water use. Environ. Res. Lett. 6, 024017 (2011).
Google Scholar
Yang, H., Reichert, P., Abbaspour, K. C. & Zehnder, A. J. B. A water resources threshold and its implications for food security. Environ. Sci. Technol. 37, 3048–3054 (2003).
Google Scholar
Oki, T., Yano, S. & Hanasaki, N. Economic aspects of virtual water trade. Environ. Res. Lett. 12, 044002 (2017).
Google Scholar
Suweis, S. et al. Structure and controls of the global virtual water trade network. Geophys. Res. Lett. 38, L10403 (2011).
Google Scholar
Tuninetti, M., Tamea, S., Laio, F. & Ridolfi, L. To trade or not to trade: link prediction in the virtual water network. AdWR 110, 528–537 (2017).
Dalin, C., Suweis, S., Konar, M., Hanasaki, N. & Rodriguez-Iturbe, I. Modeling past and future structure of the global virtual water trade network. Geophys. Res. Lett. (2012).
Xia, W., Chen, X., Song, C. & Pérez-Carrera, A. Driving factors of virtual water in international grain trade: a study for belt and road countries. Agric. Water Manage. 262, 107441 (2022).
Google Scholar
Fracasso, A. A gravity model of virtual water trade. Ecol. Econ. 108, 215–228 (2014).
Google Scholar
Kumar, M. D. & Singh, O. P. Virtual water in global food and water policy making: is there a need for rethinking? Water Resour. Manage. 19, 759–789 (2005).
Google Scholar
Zhao, D., Hubacek, K., Feng, K., Sun, L. & Liu, J. Explaining virtual water trade: a spatial-temporal analysis of the comparative advantage of land, labor and water in China. Water Res. 153, 304–314 (2019).
Google Scholar
Graham, N. T. et al. Future changes in the trading of virtual water. Nat. Commun. 11, 3632 (2020).
Google Scholar
He, L. & Rosa, L. Solutions to agricultural green water scarcity under climate change. PNAS Nexus (2023).
Wang, R., Hertwich, E. & Zimmerman, J. B. (Virtual) water flows uphill toward money. Environ. Sci. Technol. 50, 12320–12330 (2016).
Google Scholar
Liu, J. et al. Coupled human and natural systems: the evolution and applications of an integrated framework. Ambio 50, 1778–1783 (2021).
Google Scholar
Hoekstra, A. Y. & Mekonnen, M. M. Imported water risk: the case of the UK. Environ. Res. Lett. 11, 055002 (2016).
Google Scholar
Wu, X. J. et al. Identifying optimal virtual water management strategy for Kazakhstan: a factorial ecologically-extended input–output model. J. Environ. Manag. 297, 113303 (2021).
Google Scholar
Duarte, R. & Yang, H. Input–output and water: introduction to the special issue. Econ. Syst. Res. 23, 341–351 (2011).
Google Scholar
Feng, K., Chapagain, A., Suh, S., Pfister, S. & Hubacek, K. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. Econ. Syst. Res. 23, 371–385 (2011).
Google Scholar
Ali, T., Xie, W., Zhu, A. & Davis, K. F. Accounting for re-exports substantially reduces China’s virtual water demand through agricultural trade. Environ. Res. Lett. 16, 045002 (2021).
Google Scholar
Rosa, L., Chiarelli, D. D., Tu, C., Rulli, M. C. & D’Odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. 14, 114001 (2019).
Google Scholar
Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint linked to national consumption and international trade is unsustainable. Nat. Food 1, 792–800 (2020).
Google Scholar
Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700 (2017).
Google Scholar
Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).
Google Scholar
Barnett, T. P. & Pierce, D. W. Sustainable water deliveries from the Colorado River in a changing climate. Proc. Natl Acad. Sci. USA 106, 7334–7338 (2009).
Google Scholar
Barnett, T. P. & Pierce, D. W. When will Lake Mead go dry? Water Resour. Res. (2008).
Bureau of Reclamation. Colorado River Basin Water Supply and Demand Study (US Department of the Interior, 2012).
Hartman, S., Chiarelli, D. D., Rulli, M. C. & D’Odorico, P. A growing produce bubble: United States produce tied to Mexico’s unsustainable agricultural water use. Environ. Res. Lett. 16, 105008 (2021).
Google Scholar
Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).
Google Scholar
World Trade Report 2017: Trade, Technology and Jobs (WTO, 2017).
Economic Bulletin 7 (European Central Bank, 2017).
Felbermayr, G., Prat, J. & Schmerer, H.-J. Trade and unemployment: what do the data say? Europ. Econ. Rev. 55, 741–758 (2011).
Google Scholar
Fugazza, M., Carrère, C., Olarreaga, M. & Robert-Nicoud, F. Trade in Unemployment, Policy Issues in International Trade and Commodities (UNCTAD, 2014).
Trade (World Bank, 2022).
Allan, J. A. Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible. Priorities Water Resour. Allocation Manag. 13, 26 (1993).
Carr, J., D’Odorico, P., Laio, F., Ridolfi, L. & Seekell, D. Inequalities in the networks of virtual water flow. Eos Trans. Am. Geophys. Union. 93, 309 (2012).
Google Scholar
Bouët, A. & Laborde Debucquet, D. Agriculture, Development, and the Global Trading System: 2000–2015 (International Food Policy Research Institute, 2017).
Ge, J. et al. Food and nutrition security under global trade: a relation-driven agent-based global trade model. R. Soc. Open. Sci. 8, 201587 (2021).
Google Scholar
Martin, W. Agricultural Trade and Food Security. ADBI Working Paper 664 (Asian Development Bank Institute, 2017).
Sun, Z. & Zhang, D. Impact of trade openness on food security: evidence from panel data for central Asian countries. Foods 10, 3012 (2021).
Google Scholar
Chai, L. et al. Telecoupled impacts of the Russia–Ukraine war on global cropland expansion and biodiversity. Nat. Sustain. (2024).
Shumilova, O. et al. Impact of the Russia–Ukraine armed conflict on water resources and water infrastructure. Nat. Sustain. 6, 578–586 (2023).
Google Scholar
Sun, Y., Li, C. & Sheng, Y. Effects of virtual water strategy on water conservation and socioeconomic development in water-scare regions. J. Clean. Prod. 368, 133152 (2022).
Google Scholar
D’Odorico, P., Laio, F. & Ridolfi, L. Does globalization of water reduce societal resilience to drought? Geophys. Res. Lett. 37, L13403 (2010).
Tamea, S., Laio, F. & Ridolfi, L. Global effects of local food-production crises: a virtual water perspective. Sci. Rep. 6, 18803 (2016).
Google Scholar
Naylor, R. et al. Losing the links between livestock and land. Science 310, 1621–1622 (2005).
Google Scholar
Gawel, E. & Bernsen, K. What is wrong with virtual water trading? On the limitations of the virtual water concept. Environ. Plan. C 31, 168–181 (2013).
Google Scholar
Wichelns, D. Virtual water: a helpful perspective, but not a sufficient policy criterion. Water Resour. Manage. 24, 2203–2219 (2010).
Google Scholar
Wichelns, D. Virtual water and water footprints offer limited insight regarding important policy questions. Int. J. Water Resour. Dev. 26, 639–651 (2010).
Google Scholar
Feenstra, R. C. Advanced International Trade: Theory and Evidence. (Princeton Univ. Press, 2015).
Romalis, J. Factor proportions and the structure of commodity trade. Am. Econ. Rev. 94, 67–97 (2004).
Google Scholar
Reimer, J. J. On the economics of virtual water trade. Ecol. Econ. 75, 135–139 (2012).
Google Scholar
Debaere, P. The global economics of water: is water a source of comparative advantage? Am. Econ. J.: Appl. Econ. 6, 32–48 (2014).
Debaere, P. & Kurzendoerfer, A. Decomposing US water withdrawal since 1950. J. Assoc. Environ. Resour. Econ. 4, 155–196 (2017).
Debaere, P. & Konar, M. Water resources and trade: a research vision. PLOS Water 1, e0000010 (2022).
Google Scholar
Davis, D. & Weinstein, D. The Factor Content of Trade (Columbia Univ., 2002).
Martinez-Alier, J. The Environmentalism of the Poor: A Study of Ecological Conflicts and Valuation. (Edward Elgar, 2003).
Rice, J. Ecological unequal exchange: consumption, equity, and unsustainable structural relationships within the global economy. Int. J. Comp. Sociol. 48, 43–72 (2007).
Google Scholar
Friedmann, H. The political economy of food: a global crisis. N. Left Rev. 197, 29–57 (1993).
Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. On the temporal variability of the virtual water network. Geophys. Res. Lett. 39, L06404 (2012).
Google Scholar
O’Bannon, C., Carr, J., Seekell, D. A. & D’Odorico, P. Globalization of agricultural pollution due to international trade. Hydrol. Earth Syst. Sci. 18, 503–510 (2014).
Google Scholar
D’Odorico, P., Rulli, M. C., Dell’Angelo, J. & Davis, K. F. New frontiers of land and water commodification: socio-environmental controversies of large-scale land acquisitions. LDD 28, 2234–2244 (2017).
Tuninetti, M., Tamea, S. & Dalin, C. Water debt indicator reveals where agricultural water use exceeds sustainable levels. Water Resour. Res. 55, 2464–2477 (2019).
Google Scholar
Thaler, T. Social justice in socio-hydrology — how we can integrate the two different perspectives. Hydrol. Sci. J. 66, 1503–1512 (2021).
Google Scholar
Zeitoun, M. et al. Transboundary water justice: a combined reading of literature on critical transboundary water interaction and ‘justice’, for analysis and diplomacy. Water Policy 16, 174–193 (2014).
Google Scholar
Pahl-Wostl, C., Gupta, J. & Petry, D. Governance and the global water system: a theoretical exploration. Glob. Gov. 14, 419–435 (2008).
Google Scholar
Sartori, M., Schiavo, S., Fracasso, A. & Riccaboni, M. Modeling the future evolution of the virtual water trade network: a combination of network and gravity models. AdWR 110, 538–548 (2017).
Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).
Zhang, F., Jin, G. & Liu, G. Evaluation of virtual water trade in the Yellow River Delta, China. Sci. Total. Environ. 784, 147285 (2021).
Google Scholar
Chen, Z.-M. & Chen, G. Q. Virtual water accounting for the globalized world economy: national water footprint and international virtual water trade. Ecol. Indic. 28, 142–149 (2013).
Google Scholar
Cazcarro, I., Duarte, R. & Sánchez Chóliz, J. Multiregional input–output model for the evaluation of Spanish water flows. Environ. Sci. Technol. 47, 12275–12283 (2013).
Google Scholar
Steen-Olsen, K., Weinzettel, J., Cranston, G., Ercin, A. E. & Hertwich, E. G. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade. Environ. Sci. Technol. 46, 10883–10891 (2012).
Google Scholar
Tukker, A. et al. The Global Resource Footprint of Nations. Carbon, Water, Land and Materials Embodied in Trade and Final Consumption Calculated with EXIOBASE 2.1 (Netherlands Organisation for Applied Scientific Research/Leiden Univ./Vienna Univ. of Economics and Business/Norwegian Univ. of Science and Technology, 2014).
Mubako, S., Lahiri, S. & Lant, C. Input–output analysis of virtual water transfers: case study of California and Illinois. Ecol. Econ. 93, 230–238 (2013).
Google Scholar
Dietzenbacher, E. & Velázquez, E. Analysing Andalusian virtual water trade in an input–output framework. Reg. Stud. 41, 185–196 (2007).
Google Scholar
Gkatsikos, A. & Mattas, K. The paradox of the virtual water trade balance in the Mediterranean region. Sustainability 13, 2978 (2021).
Google Scholar
Zhang, Y., Fang, J., Wang, S. & Yao, H. Energy–water nexus in electricity trade network: a case study of interprovincial electricity trade in China. Appl. Energy 257, 113685 (2020).
Google Scholar
Liao, X., Zhao, X., Hall, J. W. & Guan, D. Categorising virtual water transfers through China’s electric power sector. Appl. Energy 226, 252–260 (2018).
Google Scholar
Yu, Y., Hubacek, K., Feng, K. & Guan, D. Assessing regional and global water footprints for the UK. Ecol. Econ. 69, 1140–1147 (2010).
Google Scholar
Wang, L., Fan, Y. V., Jiang, P., Varbanov, P. S. & Klemeš, J. J. Virtual water and CO2 emission footprints embodied in power trade: EU-27. Energy Policy 155, 112348 (2021).
Google Scholar
link